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Abstract. Within the framework of the color glass condensate model, we evaluate quark and gluon gener-
alized parton distributions (GPDs) and the cross section of deeply virtual Compton scattering (DVCS) in
the small-xB region. We demonstrate that the DVCS cross section becomes independent of energy in the
limit of very small xB, which clearly indicates saturation of the DVCS cross section. Our predictions for the
GPDs and the DVCS cross section at high energies can be tested at the future Electron–Ion Collider and in
ultra-peripheral nucleus–nucleus collisions at the LHC.
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1 Introduction

During the last decade hard exclusive reactions, such as
deeply virtual Compton scattering (DVCS), γ∗(q)+ p→
γ(q′)+p′, have been a subject of intensive theoretical and
experimental studies [1–16]. Particular interest has been
attached to the generalized Bjorken kinematics,

−q2 =Q2 large ,

W 2 = (P + q)2 large ,

xB =
Q2

2P · q
= const ,

t=∆2 = (P ′−P )2�Q2 , (1)

where q is the momentum of the virtual photon, P is the
initial momentum of the target hadron, P ′ is the final mo-
mentum of the target, and t is the momentum transfer.
In this kinematics the DVCS amplitude is factor-

ized [7, 8] into the convolution of the perturbative coef-
ficient function with nonperturbative generalized parton
distributions (GPDs) of the target. Recently, leading-twist
dominance (validity of the collinear QCD factorization)
in DVCS on the proton target was demonstrated by the
Hall A Collaboration at Jefferson Laboratory [17], already
at rather low values ofQ2, 1.5 GeV2 ≤Q2 ≤ 2.3 GeV2.
However, it turns out that in experiments with nuclei

the virtuality Q2 is not always very large, and one can-
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not say how accurate the predictions based on factorization
are, or, in other words, how large the higher-twist cor-
rections are. One of the examples, where this approach
cannot be applied, is DVCS on the nuclei measured by
HERMES Collaboration in DESY [18]. Due to the small
values of Q2 ∼ 1–2 GeV2 one has to use other effective
models, e.g. a generalized vector meson dominance model
(GVMD) [19].
At very large W 2 (very small values of xB), the per-

turbative collinear factorization is expected to break down
due to the high densities of the partons [20]. Even for rela-
tively large values of Q2 when the running coupling con-
stant of the strong interactions αs(Q

2) is small, the effect-
ive expansion parameter αs(Q

2)g(x,Q2), where g(x,Q2) is
the gluon density in the target, becomes large. This inval-
idates the perturbative expansion leading to the collinear
factorization. Since in heavy nuclei the parton densities
are enhanced by the atomic number A compared to those
in the nucleon, the onset of the effects associated with
high parton densities may take place at the values of xB
which will already be achieved at the future Electron–Ion
Collider (EIC).
In this paper we use the framework of the color glass

condensate (CGC) model offered in [21, 22] (see also recent
reviews [23–27]). We generalize the formalism of the CGC
model to exclusive reactions and evaluate the generalized
parton distributions (GPDs) and the DVCS amplitude at
small xB. We find that for DVCS off heavy nuclei, the
DVCS cross section is virtually xB-independent, i.e. the
DVCS cross section saturates in the small-xB limit. The
general saturation property built-in into this model is an
essentially nonperturbative effect, which complies with the
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general Froissart (unitarity) bound [28–31]

F2(x,Q
2)≤ lnn(s)∼ lnn

(
1

x

)
, (2)

where n= 3 for DIS on nucleons; n = 1 for DIS on heavy
nuclear targets. This should be compared to the Froissart
bound for the case of hadron–hadron scattering, σ ≤ ln2 s.
For comparison, estimates of the x-dependence based

on the perturbative evolution equations do not possess
saturation: DGLAP predicts a fast growing x-depen-
dence [32, 33]:

xg(x,Q2)∼ exp

(
4

√
3

π
αs(Q2) ln

Q2

Q20
ln
1

x

)
, (3)

and the BFKL framework [23, 34–40] predicts the power x-
dependence

xg(x,Q2)∼

(
1

x

)4αs(Q2) ln 2
. (4)

The crucial parameter of the CGC model is the sat-
uration scale Q2s (x,A), which gives the threshold for the
transition to the saturation regime. The saturation scale
Q2s (x,A) comes into play as a universal parameter in many
tasks. For example, in a CGC explanation of geometric
scaling [41] in DIS data fromHERA, the structure function
F2(x,Q

2) is represented as a function of only one variable,

i.e. F2(x,Q
2) = f

(
Q2

Q2s (x)

)
.

The paper is organized as follows. In Sect. 2.1 we give
a brief overview of the model used for the evaluations.
In particular, we generalize the original framework of [21,
22] to the finite nucleus case in order to consider the off-
forward matrix elements. In Sect. 3 we evaluate the quark
GPDs, and in Sect. 4 we evaluate the DVCS amplitude. In
Sect. 5 we present our results and draw conclusions.

2 Generalized parton distributions
in the color glass condensate model

2.1 Overview of the color glass condensate model

The basic assumption of CGC is that one can separate
the partons into fast (xB ∼ 1) and slow (xB � 1) ones,
according to their light-cone fraction p+. The former are
considered as classical “sources”, and the latter are the dy-
namical degrees of freedom in the model. In the leading
order of αs(Q

2), one has just ordinary Yang–Mills equa-
tions for the gluon fields, in NLO one has a standard loop
expansion. It is assumed that the dynamics of the “fast”
partons does not depend on the “slow” partons; thus, the
configurations of the fast partons are random and one must
average over all possible configurations of these “sources”
Jaµ(x) = δµ+ρ

a(x), where a is a color index, and x is a coor-
dinate. The weight functional W [ρ] encodes the dynamics

of the “fast” subsystem and comes as an external param-
eter in the model. There are no restrictions on this func-
tional except for the obvious gauge and Lorentz invariance.
The additional requirement of color neutrality,∫

d3x〈ρa(x)ρb(0)〉= 0 , (5)

was introduced in [42]. It reflects the fact that the physical
states are colorless.
If we define x0 as the scale which separates “fast” and

“slow” partons, then the dependence of the functional
W [ρ] on the scale x0 will be described by a kind of “renor-
malization group equation”:

∂W [ρ; τ ]

∂τ
=
1

2

∫
dxdy

δ

δρa(x)
χ(x,y)

δ

δρb(y)
W [ρ; τ ] ,

(6)

where τ = ln
(
1
x0

)
and χ(x,y) is a complicated functional

of the field ρ.
While in the general case this equation has not been

solved so far, there are known solutions for some spe-
cial (asymptotic) cases. Conventionally W [ρ] is chosen in
Gaussian form [21, 22, 24]:

W [ρ] =N exp

(
−
1

2

∫
dxdy

ρa(x)ρa(y)

λ(x,y)

)
, (7)

where N is the normalization factor fixed from the condi-
tion

∫
DρW [ρ] = 1 and the function λ(x,y) is either a con-

stant or a function fixed with some additional assumptions.
Physically the function λ(x,y) describes the correlation of
the partons inside the target. It is obvious that in infinite
nuclear matter it may depend only on the relative distance,
i.e.

λ(x,y) = µ2A(x−y) . (8)

In the general case, the shape of the function µ2A(r)
is unknown. However, the color neutrality condition (5)
and the requirement that in the low parton density limit
the model should reproduce BFKL predictions (4) fix the
short-distance and large-distance behaviour. It was pro-
posed in [24] that one may use the interpolation

Parameterization I:

µ2A(r) =

∫
d2k

(2π)2
µ2(k)e−ikr

=

∫
d2k

(2π)2
e−ikr

k2⊥
π

(
Q2s (x)

k2
⊥

)γ

1+
(
Q2s (x)

k2
⊥

)γ , (9)

where γ = 12

√
1+ 8 ln 27ζ(3) ≈ 0.644 is a numerical coefficient.

There are also simpler versions of the model [21, 22],
which neglect the correlation of the partons, i.e.

Parameterization II:
1

λ(x,y)
=
δ(x−y)

λA(x−)
, (10)
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where λA(x
−) is some function.1 In subsequent sections

we will consider a first evaluation with the simple param-
eterization (10), and after that we discuss how the results
change for the parameterization (9).
The choice of the Gaussian parameterization (7) en-

ables us to evaluate all the results analytically. Notice,
however, that (7) is explicitly C-even, i.e. the number of
quarks is equal to the number of antiquarks inside any tar-
get in this model. This agrees with the experimental fact
that the quark and antiquark parton densities are approxi-
mately equal at small xB. On the other hand, the C-parity
of (7) implies that the model does not distinguish matter
and antimatter and is not applicable to the evaluation of
some quantities. For example, the baryon number and elec-
tric charge of the target are exactly zero, since they are due
to the valence quarks.
An interesting generalization of the Gaussian parame-

terization (7) was discussed in [44]. In particular, it was
found that for the model of k� 1 independent noninteract-
ing quarks the distribution is indeed Gaussian, and the first
correction is proportional to ∼ dabc

∫
d3xρa(x)ρb(x)ρc(x),

where dabc is defined by the anticommutator of the genera-
tors T a of the group, {T a, T b}= 2dabcT c. However, for the
DVCS and singlet GPDs discussed in this paper the C-odd
correction does not contribute.
It is well known that at high energies, the real part

of scattering amplitudes is suppressed by the slow energy
dependence of the amplitude compared to the imaginary
part [45–48]. Therefore, it is sufficient to consider only the
imaginary part. Actually, as we shall show in Sect. 4, the
real part of the DVCS amplitude in the CGC model is ex-
actly zero.
The generating functional of the model has the form2

Z[j] =

∫
DρW [ρ]

∫
DAδ(A+)eiS[A,ρ]−

∫
dxj·A∫

DAδ(A+)eiS[A,ρ]
, (11)

where S[A, ρ] = S[A]+
∫
dxρa(x)Aa−(x) and we used the

light-cone gauge n ·A = 0, n2 = 0. In order to restore the
explicit gauge invariance of the action S[A, ρ], the inter-
action term

∫
dxρa(x)A−(x) is sometimes replaced with

Tr
∫
d3xρ(x)W [A,x], where

W [A,x] = P exp

(
ig

∫ x+
−∞
dζA+(ζ)

)
(12)

is the Wilson link.

1 From the physical point of view, the nucleus moving with
ultrarelativistic velocity in the laboratory frame is strongly
squeezed due to Lorentz contraction, the observer sees only
a thin “pancake” with (almost) uniform width and (almost
infinite) radius R. This explains the choice of the parameter-
ization (10), where λA(x

−) in the previous formula must be
strongly peaked around x− ≈ 0. Quite often, for simplicity it is
assumed that the width might be completely neglected. A very
interesting generalization of the framework to the finite width
case may be found in [43].
2 For the sake of brevity we included only gluons. Addition of
the quark sector is trivial.

2.2 Finite nucleus

Since in this paper we are interested in DVCS, an off-
forward reaction, we can no longer use the infinite nuclear
matter approximation. Indeed, the DVCS cross section off
a nuclear target rapidly decreases as one increases the mo-
mentum transfer t. As a result, sizable cross sections exist
only for |t| ∼ 1/R2A, where RA is the nuclear radius. In the
infinite nuclear matter, all the off-forward cross sections
vanish.3 This means that we have to take into account the
off-forward kinematics from the very beginning. If the co-
ordinate of the nucleus center of mass isX, then the weight
functionalW [ρ] may be chosen as

Wρ[ρ,X] = exp

{
−
1

2

∫
d3xθ(|x⊥−X⊥|<RA)

×
ρa(x−X)ρa(x−X)

λA(x−−X−)

}
, (13)

where we extracted the “zero mode” (integration over
the nucleus center of mass) explicitly according to stan-
dard technique [49] and introduced an explicit cutoff fac-
tor θ(|x⊥−X⊥|<RA) which forbids the color condensate
ρa(x) from outside of the nucleus. The cutoff in x− is
provided by the factor λA(x

−−X−). The interaction of
gluons with the condensate is also modified by this cutoff
factor:

S[A, ρ] = S[A]+Tr

∫
d3xθ(|x⊥−X⊥|<RA)ρ(x)A−(x)

(14)

for the linear interaction, or

S[A, ρ] = S[A]+Tr

∫
d3xθ(|x⊥|<RA)ρ(x)W [A](x)

(15)

for the interaction via Wilson link (12). The generating
functional (11) takes the form

Z[j] =

∫
DρdXei∆XW [ρ,X]

∫
DAδ(A+)eiS[A,ρ]−

∫
dxj·A∫

DAδ(A+)eiS[A,ρ]
.

(16)

Notice that the formal introduction of the θ-functions is
equivalent to the redefinition of the functional integral:

∫
Dρ :=

∏
x

dρ(x−, |x⊥−X⊥|<RA)d
3X . (17)

Indeed, configurations with ρ(|x⊥|>RA) 	= 0 do not inter-
act with anything and thus contribute only to the normal-
ization constant.
Since the coupling constant αs is small, we can take the

integral over the gluon field Aµ in (11) in the saddle-point

3 Technically, we get the prefactors δ(∆) for all observables in
the original framework of [21, 22] in the infinite nuclear matter
limit.
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approximation. In the leading order, the gluon field Aµ is
just the solution of the equation of motion

DµF
νµ
a (x) = δ

ν,+δ(x−)ρa(x⊥) , (18)

where ρa(x⊥) is an arbitrary external field, and the addi-
tional gauge constraint A+ = 0 is implied. Notice that we
do not impose any conditions onto the gluonic fields Aaµ at
the large distance |x|>RA. The solution of (18) is [24]

Aµ = U

(
Ãµ+

i

g
∂µ

)
U† , (19)

where4

Ãµ = δ
µ+α(x−, x⊥) , (20)

U = P exp

{
ig

∫ x−
−∞
dz−αa(z

−, x⊥)T
a

}
, (21)

α(x−, x⊥) =
1

−∂2⊥
ρ̃

=

∫
d2y⊥

1

4π
ln

1

(x⊥−y⊥)2Λ2QCD
ρ̃(x−, y⊥) ,

(22)

ρ̃(x−, x⊥) = U
†(x−, x⊥)ρ(x

−, x⊥)U(x
−, x⊥) , (23)

and T a are the generators of the color group.
The analytical solution (19) enables us to evaluate

different correlators. A straightforward evaluation of the
〈ρρ〉-correlator with the weight function (13) yields

〈P ′|ρ(x)ρ(y)|P 〉 = P̄+
∫
d3Xei∆Xθ(|x⊥−X⊥|<RA)

×λA(x
−−X−)δ3(x−y)

= f(∆)P̄+e−i∆xδ3(x−y) , (24)

where

f(∆) =

(
λ̃(∆+)≡

∫
dx−λ(x−)e−ix

−∆+
)
f⊥(∆⊥)πR

2
A ,

(25)

and

f⊥(∆⊥) =
1

πR2A

∫
d2x⊥θ(|x⊥|<RA)e

i∆⊥x⊥

=
J1(∆⊥RA)

∆⊥RA
. (26)

We can see that for any fixed non-zero ∆⊥ 	= 0 the re-
sult vanishes in the RA→∞ limit in agreement with the

4 The most interesting properties of the solution are the fol-
lowing. (1) Only transverse components of Aµ are not zero:
Ak =

i
gU∂kU

†, k= 1, 2. (2) Ai→ 0 for x
−→−∞. (3) The only

non-zero components of Fµν are F+k = −U∂kαaT
aU†. (4) In

the linear approximation, one should just drop the unitary ma-
trices U,U† to get F+k ≈−∂kαaT

a.

discussion at the beginning of this section. The evaluation
of the gluonic GPDs defined by [11]

xHg(x, ξ, t) =

1

P̄+

∫
dz−eixP̄

+
〈
P ′
∣∣∣∣F a+k

(
−
z−

2

)
F k,a+

(
−
z−

2

)∣∣∣∣P
〉

(27)

is done in a quasiclassical approximation,

xHg(x, ξ, t) ≈

∫
d3Xei∆X

∫
dz−eixP̄

+z−

×F a+k

(
−
z−

2
−X

)
F k,a+

(
z−

2
−X

)
,

(28)

where Fµν in the r.h.s. of (28) corresponds to the classi-
cal solution found in the previous subsection. Evaluation
of (28) [24] gives5

xHg(x, ξ, t) =

(
N2c −1

)
P̄+

∫
d3Xei∆X

×

(∫
d3∆̃e−i∆̃X

(
−∂2r⊥

)
γ̃A(x

−, r⊥; ∆̃)

)

× exp

[
−g2Nc

(
f̃
(
0, r2 −X

)
+ f̃
(
0,− r2 −X

)
2

− f̃(r,−X)

)]
r⊥≈1/Q

, (29)

where

f̃(r1, r2) =

∫
d2∆̃

(2π)2
e−i∆̃r2

∫ +∞
−∞

dz−γ̃A(z
−, r1; ∆̃) ,

(30)

and γ̃A(x
−, r⊥) is defined as

f(∆)P̄+
∫
d3k

(2π)3
e−ix(k+∆/2)eiy(k−∆/2)(
k⊥−

∆⊥
2

)2(
k⊥+

∆⊥
2

)2 =
δ(x−−y−)γ̃A(x

−,x⊥−y⊥)e
i∆(x+y)/2 . (31)

As one can see from (29), the gluon GPD Hg(x, ξ, t) has
a trivial x-dependence, 1/x, for all (ξ, t), since x does not
enter the right-hand side of (29). Physically, the exponent
in (29) takes into account effects nonlinear in αs in the
model.

2.3 Alternative kernel

In this section we discuss how all the previous formulae
change with an alternative weight function (9). The weight

5 We omitted here a tedious, although quite simple evalua-
tion. The interested reader may find the logic of the evaluation
in [24], generalization to the off-forward case is done in Ap-
pendix B.
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functional in this case should be written

Wρ[ρ,X] =N exp

{
−
1

2

∫
d3xθ(|x⊥−X⊥|<RA)

×
ρa(x−X)ρa(y−X)

µ2A(x−y)

}
, (32)

where the function µ2A(z) describes the correlation of the
hadrons inside the nuclei and was defined in (9). Perform-
ing the evaluation as was discussed in Sect. 2.2, we obtain

〈P ′|ρ(x)ρ(y)|P 〉 =

∫
dXei∆Xθ(|x⊥−X⊥| ≤RA)

× θ(|y⊥−X⊥| ≤RA)µ
2
A(x⊥−y⊥)

= f(x−y,∆)ei∆
x+y
2 µ2A(x−y)

=

∫
d3k

(2π)3
µ̃2A(k)e

−ix(k+∆/2)eiy(k−∆/2) ,

(33)

where

µ̃2A(k) =

∫
d2ρe−ikρf(ρ,∆)µ2A(ρ) , (34)

f(ρ,∆) =

∫
d2Xei∆Xθ

(∣∣∣∣ρ2 −X⊥
∣∣∣∣≤RA

)

× θ

(∣∣∣∣ρ2 +X⊥
∣∣∣∣≤RA

)

=

∫
d2k

(2π)2
e−ikρφ

(
k+
∆

2

)
φ

(
k−
∆

2

)
, (35)

φ(k) = πR2A
2J1(kRA)

kRA
. (36)

From (33) we can see that in finite nuclei the color neu-
trality condition (5) implies that we have to identify µ2A
from (9) with µ̃2A(r). For γ̃A(x

−, r⊥) we can immediately
obtain

〈P ′|α(x)α(y)|P 〉 = . . .

=

∫
d3k

(2π)3
µ̃2A(k)

e−ix(k+∆/2)eiy(k−∆/2)(
k⊥−

∆⊥
2

)2(
k⊥+

∆⊥
2

)2
= δ(x−−y−)γ̃A(x

−,x⊥−y⊥)e
i∆(x+y)/2 . (37)

Thus we can see that this kernel differs from the previous
one only by an additional factor µ̃2(k) in the integrand.

2.4 Quark propagator in the CGC field

Although for the evaluation of the DVCS amplitude one
may use the color dipole approximation, in this paper we
evaluate the GPDs and the Compton amplitudes directly.
In diagrammatic language this corresponds to a summa-
tion of all6 the multigluon diagrams, whereas the color

6 To avoid ambiguity, this is a “quenched approximation”,
where the diagrams with gluon loops are not taken into ac-
count. Gluon loops correspond to O(αs)-corrections.

Fig. 1. Diagrams contributing to DVCS in the color dipole ap-
proximation. See [50] for an example of a DIS evaluation in this
approach

dipole approach assumes either only a Born term contribu-
tion or an eikonal approximation, as is shown by Fig. 1.
For the evaluation of the quark GPDs in the leading

order in αs(Q
2), we need to evaluate the quark propagator

in the classical gluonic field found in the previous section.
To this end, we consider only the zero width limit,

ρ= δ(x−)ρ(x⊥) . (38)

Beyond this limit, equations with an explicit x−-depen-
dence become much more complicated. Physically, the use
of (38) in the off-forward kinematics is justified, since the
light-cone fractions of the partons are small, i.e. x, ξ� 1.
The basic idea is that for x− 	= 0 the field ρ(x) = 0, and

we have just vacuum equations; the gluon field Aµ reduces
to a pure gauge. It is possible to choose the gauge in such
a way that for x− < 0 the field disappears, Aµ = 0, and for
x− > 0 it is a pure gauge,Aµ =

i
g
U∂µU

† and thus the wave
function of the quark has the form

ψps(x) =

⎧⎪⎨
⎪⎩
us(p)e

−ipx , x− < 0 ,∫
d4p′δ(p2−p′2)

∑
s′ Css′(p, p

′)us′(p
′)e−ipx ,
x− > 0 ,

(39)

where us(p) is a free Dirac spinor, and thematrixCss′(p, p
′)

is found from the continuity at the point x− = 0. One sub-
tle point is that the Dirac operator has the form

iD̂ = i∂−γ
−+ . . . , (40)

and the matrix γ− is singular, because it is proportional
to the light-cone projector Λ(−). This implies that the con-
tinuity condition must be imposed not on the function



208 K. Goeke et al.: Generalized parton distributions and deeply virtual Compton scattering in CGC model

ψps(x) as a whole, as in [21, 22, 24], but rather only on the

component7 ψ
(−)
ps (x) = Λ(−)ψps(x). The final result for the

wave function is

ψps(x) = θ(−x
−)us(p)e

−ip·x+ θ(x−)U(x⊥)

×

∫
d4k

(2π)4
δ(k−−p−)δ

(
k+−

k2⊥+p
2

2p−

)

×

(∫
d2zei(p⊥−k⊥)·zU†(z)

)
e−ik·x

×

(
1+

γ0

k−
√
2
(k̂⊥+M)

)
Λ(−)us(p) , (41)

where M is the mass of the quark. The evaluation of the
quark propagator according to

S(x, y) =

∫
d4p

(2π)4

∑
s ψps(x)ψ̄ps(y)

p2−M2+ i0
, (42)

yields

S(x, y)−S0(x−y) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 , x− < 0 , y− < 0 ,

(U(x⊥)U
†(y⊥)−1)S0(x−y) , x− > 0 , y− > 0 ,∫

d4p
(2π)4

1
p2−M2+i0

∫
d2k
(2π)2

× exp
{
i
(
k2⊥+M

2

2p−
y−+p−y+−k⊥y⊥−p ·x

)}
×
∫
d2ze−i(p⊥−k⊥)z(p̂+M)Λ(+)

(
1+ γ0

p−
√
2
(M − k̂⊥)

)
×(U(z)U†(y⊥)−1) , x− < 0 , y− > 0 ,∫
d4p
(2π)4

1
p2−M2+i0

∫
d2k
(2π)2

× exp
{
−i
(
k2⊥+M

2

2p−
x−+p−x+−k⊥x⊥−p ·y

)}
×
∫
d2zei(p⊥−k⊥)z

(
1+ γ0

p−
√
2
(k̂⊥+M)

)
Λ(−)(p̂+M)

×(U(x⊥)U†(z)−1) , x− > 0 , y− < 0 ,

(43)

where S0(x−y) is the free propagator

S0(x−y) =

∫
d4p

(2π)4
e−ip(x−y)

p̂−M + i0
. (44)

It might be checked that the propagatorS(x, y) satisfies
(iD̂−M)S(x, y) = δ(x−y) as well as reduces to S0(x−y)
in the U → 1 limit.

3 Unintegrated quark GPDs

In this section we evaluate the unintegrated quark GPDs
defined via the following matrix element (we assume that

7 Thanks to P. Pobylitsa. The attempt to impose the continu-

ity on both components ψ
(+)
ps and ψ

(−)
ps leads to inconsistency

with the equations of motion [51].

the target has spin 0):

H(x, ξ,∆⊥,k⊥)

=

∫
dz−

2π

∫
d2r⊥e

−ik⊥r⊥eixP̄
+z−

×

〈
P ′
∣∣∣∣ψ̄
(
−
z−

2
−
r⊥
2

)
γ+ψ

(
z−

2
+
r⊥
2

)∣∣∣∣P
〉
.

(45)

In the forward limit (∆⊥ → 0, ξ → 0) the function
H(x, ξ,∆⊥,k⊥) reduces to the unintegrated parton dis-
tribution q(x,k⊥), and when integrated over k⊥, it gives
ordinary GPDs. In the quasiclassical approximation, (45)
reduces to

H(x, ξ,∆⊥,k⊥) =∫
dz−

2π
eixP̄

+z−
∫
d2r⊥e

−ik⊥r⊥ iP̄+
∫
d3Xe−i∆X

×

〈
Tr

[
γ+S

(
−
z−

2
−
r⊥
2
−X,

z−

2
+
r⊥
2
−X

)]〉
,

(46)

where here and below angular brackets without explicit
initial and final states 〈. . . 〉 are the short-hand notation
for averaging (integration) over all possible configurations
ρ(x), i.e. 〈Ô〉 :=

∫
DρW [ρ]O(ρ). Substituting the propa-

gator (43) and taking the integral over each domain, one
obtains the final result

H(x, ξ,∆⊥,k⊥) =H
(+−)+H(−+) , (47)

where

H+−

= 2Nc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−

(
k+ ∆⊥2

)
· (k−κ⊥)

(x− ξ)((k−κ⊥)2+M2)− (x+ ξ)
((
k+ ∆⊥2

)2
+M2

)
× ln

∣∣∣∣x− ξx+ ξ

(k−κ⊥)2+M2(
k+ ∆⊥2

)2
+M2

∣∣∣∣ , (48)

H−+

= 2Nc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−

(
k− ∆2

)
· (k⊥−κ⊥)

(x+ ξ)((k⊥−κ⊥)2+M2)− (x− ξ)
((
k− ∆2

)2
+M2

)
× ln

∣∣∣∣x+ ξx− ξ

(k⊥−κ⊥)2+M2(
k− ∆2

)2
+M2

∣∣∣∣ ; (49)

the superscript signs (±,±) refer to different integration
domains over (dX−, dz−) in (46), and function γ̃

(
κ−



K. Goeke et al.: Generalized parton distributions and deeply virtual Compton scattering in CGC model 209

∆⊥
2 , κ+

∆⊥
2

)
is defined as

γ̃

(
κ+
∆⊥

2
, κ−

∆⊥

2

)
:=

∫
d2ρd2X

(2π)2
ei∆

⊥X⊥+iκ⊥ρ

×

〈
U†
(
X+

ρ

2

)
U

(
X−

ρ

2

)〉
.

(50)

Evaluation of this quantity (see Appendix B for details)
yields

γ̃

(
κ+
∆⊥

2
, κ−

∆⊥

2

)

=

∫
d2reiκr

∫
d2X⊥e

i∆⊥X⊥ exp

[
−g2Nc

×

(
f̃
(
0, r2 −X

)
+ f̃
(
0,− r2 −X

)
2

− f̃(r,−X)

)]
.

(51)

Notice that GPD (47) is antisymmetric, i.e. H(−x, ξ) =
−H(−x, ξ). Also, (47) is not required to satisfy polynomi-
ality since the original model is valid only for x� 1.
One of the subtle points of the result (47) is the loga-

rithmic behaviour ∼ ln |x± ξ| in the vicinity of the points
x ∼±ξ. Physically, in these points one of the quarks has
a zero light-cone fraction and becomes especially sensitive
to the details of the model. However, since we are in the
saturation regime, the factorization formula does not work,
and we expect that such a behaviour should not cause any
physical problems. In Appendix A we give details on the
evaluation of (47), and in particular we discuss the loga-
rithmic singularities.

4 DVCS amplitude

In this section we evaluate the DVCS amplitude directly
(not using factorization). The first reason to do this is that
the GPDs evaluated in the previous section are valid only
for small values x� 1, whereas the convolution formula
which follows from factorization implies integration over
the light-cone fraction over the region −1 < x < 1. The
second reason is that, as we discussed in Sect. 1, in the
saturation (high-density) regime the convolution formula
becomes invalid.
The starting point of our derivation is the definition of

the DVCS amplitude

Aµν =−i

∫
d4z〈P ′|Jν(0)Jµ(z)|P 〉Ae

−iq·z . (52)

In the quasiclassical approximation the matrix element
〈P ′|Jν(0)Jµ(z)|P 〉A is reduced to

〈P ′|Jν(0)Jµ(z)|P 〉A

=

∫
d3Xei∆X〈P ′|Jν(−X)Jµ(z−X)|P 〉

=−

∫
d3Xei∆X〈Tr[γµS(z−X,−X)γνS(−X, z−X)]〉 ,

(53)

where S(x, y) is the propagator (43). Substituting (43)
into (53) and taking the integrals, we may reduce the
DVCS amplitude to the form

Aµν = i
MA

2π

∫
d3p

(2π)3
d2k

(2π)2
γ̃

(
k+
∆⊥

2
,k−

∆⊥

2

)

×
Θ
(
− q

−

2 ≤ p
− ≤ q

−

2

)
q+((p−)2− (q−)2/4)+

k2⊥+M
2

2 q−− i0

×

[
2(q+−∆+)((p−)2− (q−)2/4)+p−p⊥∆⊥

+ q−
(
p2⊥+M

2+
∆2⊥
4

)]−1

×

(
8Ncδµ+δν+(M

2−k2⊥−p
2
⊥)

(
M2−p2⊥+

∆2⊥
4

)

+8Ncδµ⊥δν⊥[p
µ
⊥p
ν
⊥((q

−)2−4(p−)2)+

+p−gµν(4p
−(M2+p2⊥)− q

−p⊥ ·∆⊥)]

+32Ncδµ−δν−

(
(p−)2−

(q−)2

4

)2

+8Nc(δµ+δν−+ δν+δµ−)

(
(p−)2−

(q−)2

4

)

×

(
2M2−2p2⊥−k

2
⊥+
∆2⊥
4

))
. (54)

One interesting point is that the real part of (54) is exactly
zero. Indeed, taking the imaginary part of the first ratio
containing−i0 and using

1

x− i0
= P

(
1

x

)
+ iπδ(x) , (55)

we can immediately find that the argument of the δ-
function is zero only for

|p−|=
q−

2

√
1+
2(k2⊥+M

2)

Q2
≥
q−

2
, (56)

i.e. outside the integration domain. For comparison, from
phenomenology it is known that the high-energy amplitude
gets a dominant contribution from the imaginary part.

5 Results for GPDs and DVCS cross sections

In this section we present results of the numerical evalu-
ation of the GPDs and DVCS cross sections. In Sect. 5.1
we consider first the results with a simpler parameteriza-
tion (10), and after that in Sect. 5.2 with a more realistic
parameterization (9).

5.1 Results with parameterization II

As one can see from (29), for both parameterizations I
and II the x-dependence of the gluon GPD HgA(x, ξ, t)
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is trivial – just 1/x for all (ξ, t). For the quark GPDs
HqA(x, ξ, t) the x-dependence is more complicated; how-
ever, in the forward case the parton distribution qA(x) also
has a simple 1/x-dependence. For better understanding,
we prefer to discuss the results for the gluons in terms
of the ratio HgA(x, ξ, t)/gA(x), which measures the off-
forward effects, and gA(x) is the forward gluon PDF eval-
uated in the same model.
In Fig. 2 we plot the ξ- and t-dependence of the

ratio HgA(x, ξ, t)/gA(x) for different nuclei. In the up-
per panel of Fig. 2 we plot the t-dependence of the ratio
HgA(x, ξ, t)/gA(x) in the nuclei for ξ = 0. We can see that
Hg(x, ξ, t) is decreasing as a function of t. For the sake of
comparison, on the same plot we also plotted in grey lines
the nuclear form factors in conventional exponential pa-

rameterization, FA(t) = exp
(R2A
6 t
)
, and for radius RA we

used RA = 1.2 fm×A1/3. We can see that to a good extent
the t-dependence of the GPDs is similar to that of the form
factors.
In the lower panel of Fig. 2 we plot the ξ-dependence of

the gluon GPDs in nuclei. We can see that in the small-ξ
region Hg(x, ξ, t) is independent of the skewedness ξ. This
result is quite easy to understand: in the ultrarelativistic
limit the nucleus in the laboratory frame is squeezed to
an infinitely thin “pancake”, so the condensate distribu-
tion along the x−-axis is strongly peaked around x− ≈ 0,
λA(x

−)∼ δ(x−). As a consequence, the gluon GPD which
is proportional to the Fourier transform of λA(x

−), almost
does not depend on ∆+ ∼ ξ. The only exception is the re-
gion of sufficiently large ξ ∼ 0.1, where the ξ-dependence is
mainly a kinematical effect – the increase of Hg(x, ξ, t) is
due to decreasing ∆⊥ at fixed t. However, these values of
ξ ∼ 0.1 are too large, and our extrapolation of the model
becomes unreliable.
In Fig. 3 we plot the x-, ξ- and t-dependence of the

quark GPDHqA(x, ξ, t) in nuclei. As one can see from (47),
in the forward limit the quark distributions have a very
simple x-dependence, HqA(x, 0, 0)≡ qA(x) ∼ 1/x. For bet-
ter legibility, we prefer to discuss results for the quarks in
terms of the ratio HqA(x, ξ, t)/qA(x), which measures off-
forward effects.
From the upper panel in Fig. 3 we can see that for

x� ξ the GPD HqA(x, ξ, t) is decreasing approximately as
HqA(x, ξ, t) ∼ x, and as a result the ratio H

q
A(x, ξ, t)/qA(x)

behaves approximately asHqA(x, ξ, t)/qA(x)∼ x
2. For x�

ξ, HqA(x, ξ, t) ≈ qA(x)FA(t), and the ratio is a constant. In
the point x= ξ we have a singularity∼ ln |x−ξ|, which was
mentioned at the end of Sect. 3 and discussed in detail in
Appendix A.
From the middle panel in Fig. 3 we can see that

as a function of ξ the generalized quark distribution is
a constant for ξ� x, but it is a decreasing function for
ξ� x.
From the lower panel in Fig. 3 we can see the t-

dependence of the GPD HqA(x, ξ, t). For the sake of
comparison, on the same plot we also plotted in grey
lines the nuclear form factors in the frequently used

exponential parameterization, FA(t) = exp
(R2A
6 t
)
. We

can see that HqA(x, ξ, t) is decreasing a bit faster than
FA(t).

Fig. 2. Upper plot: t-dependence of the gluon distribution for
different nuclei. ξ = 0, Q2 = 1GeV2. For comparison, we also
plotted in grey lines the nuclear form factor in the simplest

exponential parameterization FA(t) = exp
(R2A
6 t
)
. Lower plot:

ξ-dependence for the same nuclei for fixed t = −0.01 GeV2,
Q2 = 1GeV2. We do not plot the x-dependence of the gluon
GPD Hg, which is according to (29) just a trivial 1/x for all
(ξ, t)

In Fig. 4 we plot the ξ- and t-dependence of the differ-
ential DVCS cross section dσ/dt for fixedQ2 and different
nuclei.
From the upper part of Fig. 4 we can see that the cross

section is growing when ξ is decreasing, but at some ξ,
which we call ξsat(Q

2, A), we have a qualitative transition
to the saturation. The value ξsat(Q

2, A) depends on the ex-
ternal kinematics. The relatively large value ξsat ∼ 0.01 is
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Fig. 3. Upper plot: x-dependence of the quark GPDHA(x, ξ, t).
ξ = 10−2, Q2 = 1GeV2.Middle plot: ξ-dependence of the same

GPD HA(x, ξ, t) for fixed x = 10
−4, Q2 = 1GeV2, ξmax =√

−t/(4M2− t). Lower plot: t-dependence of the same GPD
HA(x, ξ, t). For comparison, we also plotted in grey lines the
nuclear form factor in the the simplest exponential parameteri-

zation FA(t) = exp
(R2A
6 t
)

Fig. 4. Upper plot: ξ-dependence of the differential DVCS
cross section in the CGC model for different nuclei. Kine-
matic is chosen as Q2 = 1GeV2, t= −0.01 GeV2. Lower plot:
t-dependence of the DVCS cross section at fixed ξ = 10−4. On
the lower plot, we also plotted in grey lines what one would
have with the simplest factorized t-dependence of the DVCS
amplitude and exponential parameterization for the form fac-

tor: dσdt ∼ F
2
A(t)∼ exp

(R2A
3 t
)

due to the small value of Q2 = 1GeV2, ξsat is decreasing
whenQ2 increases.
From the lower plot on Fig. 4 we can see the t-

dependence of the differential cross section dσ/dt. For the
sake of comparison, on the same plot we also plotted in grey
lines the nuclear form factors in a conventional exponential
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parameterization, FA(t) = exp
(R2A
6 t
)
. We see that dσ/dt

is decreasing a bit faster than F 2A(t).

5.2 Results with parameterization I

In this section we discuss the results of a color glass conden-
sate model in the parameterization (9). The crucial point is
that this model explicitly contains the saturation scaleQ2s ,

Fig. 5. Upper plot: t-dependence of the gluon distribution for
different nuclei. ξ = 0, Q2 = 1GeV2. Lower plot: ξ-dependence
for the same nuclei for fixed t= −0.01 GeV2, Q2 = 1GeV2. We
do not plot the x-dependence of the gluon GPD Hg , which is
according to (29) just a trivial 1/x for all (ξ, t). On the upper
plot, we also plotted in grey lines the nuclear form factor in the

simplest exponential parameterization FA(t) = exp
(R2A
6 t
)

Fig. 6. Upper plot: x-dependence of the quark GPDHA(x, ξ, t).
ξ = 10−3, Q2 = 1GeV2.Middle plot: ξ-dependence of the same
GPD HA(x, ξ, t) for fixed x= 10

−3, Q2 = 1GeV2. Lower plot:
t-dependence of the same GPD HA(x, ξ, t). On the upper plot,
we also plotted in grey lines the nuclear form factor in the

simplest exponential parameterization FA(t) = exp
(R2A
6 t
)
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and as a consequence we can apply it only to the kinematics
where saturation is present. In our evaluations we used for
Q2s the parameterization from [25], where Q

2
s (A) is found

as a solution of

Q2s (A) = αs(Q
2)Ncµ

2
A ln

(
Q2s (A)

Λ2QCD

)
. (57)

Fig. 7. Upper plot: ξ-dependence of the differential DVCS
cross section in the CGC model for different nuclei. The kine-
matics is chosen as Q2 = 1GeV2, t= −0.01 GeV2. Lower plot:
t-dependence of the DVCS cross section at fixed ξ = 10−4. On
the lower plot, we also plotted in grey lines what one would
have with the simplest factorized t-dependence of the DVCS
amplitude and exponential parameterization for the form fac-

tor: dσdt ∼ F
2
A(t)∼ exp

(R2A
3 t
)

This equation has real solutions only for A � Amin(Q2) ∼
150 for Q2 ∼ 1 GeV2, and Amin(Q2) is a growing function
ofQ2.
In Figs. 5 and 6 we plot the ξ- and t-dependence of

the gluon and quark distributions HA(x, ξ, t)/qA(x), and
in Fig. 7 we plot the ξ- and t-dependence of the differential
DVCS cross section dσ/dt. We can see that qualitatively
the behaviour is the same as in the previous section, al-
though absolute values differ.

5.3 Comparison to DVCS cross section
in GVMD model

In Fig. 8 we compare predictions for the DVCS cross sec-
tion with our earlier result [19] obtained in generalized
vector dominance model (GVMD). We can see the differ-
ence in the predictions of the GVMD and CGC models: in
contrast to the saturation behavior in CGC, the GVMD
cross section is slowly growing as ξ−α when ξ is decreasing.
Nevertheless, in the region 10−5 ≤ ξ ≤ 10−3 predictions of
both models have comparable values.

6 Conclusion

In this paper we considered generalized parton distri-
butions (GPDs) and deeply virtual Compton scattering
(DVCS) amplitudes in the color glass condensate model.

Fig. 8. Comparison of the ξ-dependence of the DVCS cross
section in different models. Solid curve corresponds to param-
eterization I from (9), dashed curve corresponds to parame-
terization II from (10), dot-dashed corresponds to generalized
vector meson dominance (GVMD) from [19]. The kinemat-
ics is chosen as Q2 = 1GeV2, t = −0.01 GeV2; for the nucleus
A= 208 (lead)
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We modified the original formulation of [21, 22] to off-
forward kinematics of hard exclusive reactions, which pro-
vided the necessary framework for the calculation of GPDs
and the DVCS amplitude.
We evaluated the quark and gluon GPDs in this model

and studied their dependence on the variables x, ξ and
t. We found that the gluon GPD Hg in this model has
a simple x-dependence Hg(x) ∼ 1/x for all (ξ, t). A simi-
lar 1/x-behaviour was observed for the quark GPDs Hq in
the x� ξ region and in the forward limit (t= 0). Both the
quark and gluon GPDs are decreasing as a function of mo-
mentum transfer t, and the quark GPD is decreasing a bit
faster than the gluon GPD.
Without assuming the validity of the collinear factor-

ization, we evaluated the DVCS cross sections in the small-
ξ region on the large nuclei. We found that in this re-
gion the DVCS cross sections are almost independent of
ξ. This is a manifestation of the general saturation prop-
erty inherent to the CGC model. As far as absolute values
are concerned, we found that the predictions of CGC in
the relevant range of ξ are comparable with predictions of
other models, e.g. GVMD. Currently there are no experi-
mental data available for the DVCS cross section in this
kinematics.
The present calculation should be important for a wide

range of future experiments. For example, gluon GPDs in
the small-x region may be used for the evaluation of heavy
vector meson production in ultraperipheral collisions at
the LHC [52, 53].
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Appendix A: Details of evaluation of (46)

In this section we evaluate the unintegrated GPD (45),
which in a quasiclassical approximation was reduced to

H(x, ξ,∆⊥,k⊥)

= iP̄+
∫
dz−

2π

∫
d2r⊥e

−ik⊥r⊥

∫
d3Xe−i∆X

×

〈
Tr

[
γ+S

(
−
z−

2
−
r⊥
2
−X,

z−

2
+
r⊥
2
−X

)]〉

= iP̄+
∫
d3ξ1
(2π)3

d3ξ2
(2π)3

eip2·ξ2−ip1·ξ1〈Tr[γ+S(ξ1; ξ2)]〉 ,

(A.1)

where we changed the integration variables according to

ξ1 =−
z−

2
−
r⊥
2
−X , (A.2)

ξ2 =
z−

2
+
r⊥
2
−X , (A.3)

and we introduced the short-hand notation

p1 = xP̄
++k⊥−

∆

2
, (A.4)

p2 = xP̄
++k⊥+

∆

2
. (A.5)

Now we have to separately consider the first case ξ−1 >
0, ξ−2 < 0 and the second case ξ

−
1 < 0, ξ

−
2 > 0. All the other

regions are just the vacuum contributions ∼ δ2(∆⊥) and
must be omitted. For the sake of brevity we will refer to the
contribution of the first region as H+−, and to the second
one asH−+.
For θ-functions of the arguments ±ξ1,2, we will use the

integral representation

θ(±ξ) =
1

2πi

∫ ∞
−∞
dα
e±iαξ

α− i0
=−

1

2πi

∫ ∞
−∞
dα
e∓iαξ

α+ i0
.

(A.6)

A.1 Evaluation of H+�

In the first case we have explicitly

H+−

=−iP̄+
∫
d3ξ1
(2π)3

d3ξ2
(2π)3

eip2·ξ2−ip1·ξ1

×

∫
dα1dα2
(2π)2

ei(α1ξ
−
1 −α2ξ

−
2 )

(α1− i0)(α2− i0)

×

∫
d4p

(2π)4
1

p2−M2+ i0

∫
d2q

(2π)2

× exp

{
−i

(
q2⊥+M

2

2p−
ξ−1 − q⊥ · ξ1⊥−p

+ξ−2 +p⊥ξ
⊥
2

)}

×

∫
d2zei(p⊥−q⊥)z〈U†(z)U(ξ1⊥)〉

×Tr

[
γ+

(
1+

γ0

p−
√
2
(q̂⊥+M)

)
Λ(−)(p̂+M)

]
. (A.7)

Now we evaluate each of the integrals:

∫
dξ−1 dξ

−
2

(2π)2
eip
+
1 ξ
−
1 −ip

+
2 ξ
−
2 ei(α1ξ

−
1 −α2ξ

−
2 )

× exp

(
−i
q2⊥+M

2

2p−
ξ−1 + ip

+ξ−2

)

= δ

(
α1+p

+
1 −
q2⊥+M

2

2p−

)
δ(α2+p

+
2 −p

+) , (A.8)

×

∫
d2p⊥
(2π)2

∫
d2zei(p⊥−q⊥)z

∫
d2ξ⊥1 d

2ξ⊥2
(2π)4

× e−ip
⊥
1 ξ
⊥
1 +ip

⊥
2 ξ
⊥
2 eiq⊥ξ

⊥
1 −ip⊥ξ

⊥
2 〈U(ξ1⊥)U

†(z)〉
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=

∫
d2zei(p2⊥−q⊥)z

×

∫
d2ξ⊥1
(2π)2

e−i(p
⊥
1 −q⊥)ξ

⊥
1 〈U†(z)U(ξ1⊥)〉

∣∣∣∣
p⊥=p2⊥

.

(A.9)

Now we change the dummy integration variables ξ⊥1 and z
toX⊥ and ρ⊥:

ξ⊥1 :=X
⊥−
ρ⊥

2
, (A.10)

z :=X⊥+
ρ⊥

2
,

=⇒

∫
d2zei(p2⊥−q⊥)z

∫
d2ξ⊥1 d

2ξ⊥2
(2π)4

e−ip
⊥
1 ξ
⊥
1 +ip

⊥
2 ξ
⊥
2

× eiq⊥ξ
⊥
1 −ip2⊥ξ

⊥
2 〈U(ξ1⊥)U

†(z)〉

= γ̃

(
k⊥− q⊥+

∆⊥

2
, k⊥− q⊥−

∆⊥

2

)
, (A.11)

where γ̃ was defined in (50). It is convenient to make a shift
of the dummy integration variable according to

∫
d2q⊥

(2π)2
→

∫
d2κ⊥

(2π)2
, κ⊥ = k⊥−q⊥ . (A.12)

=⇒ H+−(x, ξ, t, k⊥)

=−iNc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×

∫
dp+dp−

(2π)2
1

2p+p−−p⊥22 −M
2+ i0

×
1

p+−p+2 − i0

1
(k⊥−κ⊥)

2+M2

2p−
−p+1 − i0

×
M2−p2⊥(k⊥−κ⊥)

p−
. (A.13)

Nowwe take the integrals over p+ and p− in (A.13). The
first integral is taken over p+, and the result is

∫
dp+

(2π)

1

2p+p−−p⊥22 −M
2+ i0

1

p+−p+2 − i0
=

iθ(p−)

2p+2 p
−− (p⊥2 )

2−M2+ i0
. (A.14)

Integration over p− yields

H+−(x, ξ, t, k⊥)

= 2Nc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−p2⊥ · (k⊥−κ⊥)

(x− ξ)((k⊥−κ⊥)2+M2)− (x+ ξ)(p⊥22 +M
2)

× ln

∣∣∣∣x− ξx+ ξ

((k⊥−κ⊥)2+M2)

(p⊥22 +M
2)

∣∣∣∣

= 2Nc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−

(
k+ ∆⊥2

)
· (k−κ⊥)

(x− ξ)((k−κ⊥)2+M2)− (x+ ξ)
((
k+ ∆⊥2

)2
+M2

)
× ln

∣∣∣∣x− ξx+ ξ

(k−κ⊥)2+M2(
k+ ∆⊥2

)2
+M2

∣∣∣∣ . (A.15)

A.2 Evaluation of H�+

In complete analogy we evaluate the termH−+:

H−+

=−i

∫
d3ξ1
(2π)3

d3ξ2
(2π)3

eip2·ξ2−ip1·ξ1

×

∫
dα1dα2
(2π)2

ei(α1ξ
−
1 −α2ξ

−
2 )

(α1+ i0)(α2+ i0)

×

∫
d4p

(2π)4
1

p2−M2+ i0

∫
d2q

(2π)2

× exp

{
i

(
q2⊥+M

2

2p−
ξ−2 − q⊥ · ξ2⊥−p

+ξ−1 +p⊥ξ
⊥
1

)}

×

∫
d2ze−i(p⊥−q⊥)z〈U†(ξ⊥2 )U(z)〉

×Tr

[
γ+(p̂+M)Λ

(+)

(
1+

γ0

p−
√
2
(M − k̂⊥)

)]
.

(A.16)

Now take the integrals term-by-term in complete anal-
ogy with the previous case:

∫
dξ−1 dξ

−
2

(2π)2
eip
+
1 ξ
−
1 −ip

+
2 ξ
−
2 ei(α1ξ

−
1 −α2ξ

−
2 )

× exp

(
i
q2⊥+M

2

2p−
ξ−2 − ip

+ξ−1

)

= δ(α1+p
+
1 −p

+)δ

(
α2+p

+
2 −
q2⊥+M

2

2p−

)
,

×

∫
d2p⊥
(2π)2

∫
d2ze−i(p⊥−q⊥)z

∫
d2ξ⊥1 d

2ξ⊥2
(2π)4

× e−ip
⊥
1 ξ
⊥
1 +ip

⊥
2 ξ
⊥
2 e−iq⊥ξ

⊥
2 +ip⊥ξ

⊥
1 〈U†(ξ⊥2 )U(z)〉

=

∫
d2ze−i(p1⊥−q⊥)z

×

∫
d2ξ⊥2
(2π)2

ei(p
⊥
2 −q⊥)ξ

⊥
2 〈U†(ξ2⊥)U(z)〉

∣∣∣∣
p⊥=p1⊥

.

(A.17)

Now change the dummy integration variables ξ⊥2 , z to
X, ρ⊥ according to

ξ⊥2 :=X
⊥+
ρ⊥

2
, (A.18)
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z :=X⊥−
ρ⊥

2
(A.19)

=⇒

∫
d2p⊥
(2π)2

∫
d2ze−i(p⊥−q⊥)z

∫
d2ξ⊥1 d

2ξ⊥2
(2π)4

× e−ip
⊥
1 ξ
⊥
1 +ip

⊥
2 ξ
⊥
2 e−iq⊥ξ

⊥
2 +ip⊥ξ

⊥
1 〈U†(ξ⊥2 )U(z)〉

= γ̃

(
k⊥− q⊥+

∆⊥

2
, k⊥− q⊥−

∆⊥

2

)
, (A.20)

where the function γ̃ was defined in (50). Now we shift the
dummy integration variable according to

∫
d2q⊥

(2π)2
→

∫
d2κ⊥

(2π)2
, κ⊥ = k⊥−q

⊥

=⇒ H−+(x, ξ, t, k⊥)

= +iNc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×

∫
dp+dp−

(2π)2
1

2p+p−−p⊥21 −M
2+ i0

×
1

p+−p+1 + i0

1
(k⊥−κ⊥)

2+M2

2p−
−p+2 + i0

×
M2−p1⊥(k⊥−κ⊥)

p−
. (A.21)

First take the integral over the p+:

∫
dp+

(2π)

1

2p+p−−p⊥21 −M
2+ i0

1

p+−p+1 + i0
=

−
iθ(−p−)

2p+1 p
−− (p⊥1 )

2−M2+ i0
; (A.22)

next we take the integral over p−:

=⇒ H−+

= 2Nc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−p1⊥ · (k⊥−κ⊥)

(x+ ξ)((k⊥−κ⊥)2+M2)− (x− ξ)((p⊥1 )
2+M2)

× ln

∣∣∣∣x+ ξx− ξ

(k⊥−κ⊥)2+M2

(p⊥1 )
2+M2

∣∣∣∣
= 2Nc

∫
d2κ⊥

(2π)2
γ̃
(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−

(
k− ∆2

)
· (k⊥−κ⊥)

(x+ ξ)((k⊥−κ⊥)2+M2)− (x− ξ)
((
k− ∆2

)2
+M2

)
× ln

∣∣∣∣x+ ξx− ξ

(k⊥−κ⊥)2+M2(
k− ∆2

)2
+M2

∣∣∣∣ . (A.23)

In summary, we have

H+− =

2Nc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−

(
k+ ∆⊥2

)
· (k−κ⊥)

(x− ξ)((k−κ⊥)2+M2)− (x+ ξ)
((
k+ ∆⊥2

)2
+M2

)
× ln

∣∣∣∣x− ξx+ ξ

(k−κ⊥)2+M2(
k+ ∆⊥2

)2
+M2

∣∣∣∣ , (A.24)

H−+ =

2Nc

∫
d2κ⊥

(2π)2
γ̃

(
κ⊥+

∆⊥

2
, κ⊥−

∆⊥

2

)

×
M2−

(
k− ∆2

)
· (k⊥−κ⊥)

(x+ ξ)((k⊥−κ⊥)2+M2)− (x− ξ)
((
k− ∆2

)2
+M2

)
× ln

∣∣∣∣x+ ξx− ξ

(k⊥−κ⊥)2+M2(
k− ∆2

)2
+M2

∣∣∣∣ . (A.25)

Notice that the sum

H(x, ξ, t,k⊥) =H
+−(x, ξ, t,k⊥)+H

−+(x, ξ, t,k⊥)
(A.26)

is antisymmetric with respect to the inversion of the light-
cone fractionx→−x, i.e.H(−x, ξ, t,k⊥) =−H(x, ξ, t,k⊥).
We can see that in the points x=±ξ the result (A.26)

has logarithmic divergences ∼ ln |x∓ ξ|. Physically, in
these points one of the quarks has a zero light-cone frac-
tion, and as a consequence (A.26) becomes very sensitive
to the details of the short-distance structure of the model.
When we evaluated (A.26), we integrated over p± up to
infinity. Rigorously speaking, this contradicts the basic as-
sumptions of the model, in particular (38), which is valid
only when the moments of the active partons are much
smaller than the moment of the whole nucleus. However,
since for p+1,2 	= 0 the integrals were convergent (the domin-
ant contribution comes from the region where the model is
valid), we could ignore such an explicit cutoff. Notice that
in the evaluation of the physical DVCS amplitude (54) the
cutoffs |p−| ≤ q−/2 were provided by the external kinemat-
ics. Generalization of (38) to the more realistic color source
is a much more complicated task.

Appendix B: 〈UyU〉-correlator in finite nuclei

As we have seen in the previous section, and as we shall
see in the next section, physical observables depend on the
correlator

〈P ′|U†(x)U(y)|P 〉

≈ P̄+
∫
d3Xei∆XTr(U†(x−X)U(y−X)) .

(B.1)

Notice that the weight functional W is expressed in
terms of the field ρ, i.e. the correlator is an essentially non-
linear object. For a finite nucleus, evaluation of this object
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slightly differs from the original derivation given in [21, 22].
However, since the weight functionalW [ρ] is Gaussian, the
total result can be expressed in terms of the elementary
correlator8 〈P ′|ρρ|P 〉.
The final result of our evaluation is

S(x, y)

= 〈P ′|U†(x⊥)U(y⊥)|P 〉

= ei∆
x⊥+y⊥
2

∫
d2Xei∆⊥X exp

[
−g2Nc

×

(
f̃
(
0, x⊥−y⊥2 −X

)
+ f̃
(
0,−x⊥−y⊥2 −X

)
2

−f̃(x⊥−y⊥,−X)
)]
, (B.2)

where f̃(r1, r2) =
∫
d2∆̃
(2π)2

e−i∆̃r2
∫ +∞
−∞ dz

−γ̃A(z
−, r1; ∆̃).

Indeed, using the definition

U(x) = P exp

(
ig

∫ +∞
−∞

dz−αa(z−,x⊥)Ta

)
, (B.3)

we may notice that

– only even powers of α give a non-zero contribution
to (B.2);
– the first term (zero order in α) is proportional to δ(∆)
and vanishes in the off-forward limit.

The contribution of the second-order term gives

− g2Nce
i∆⊥

x⊥+y⊥
2

(
cos

(
∆⊥
x⊥−y⊥
2

)∫
dz−γ̃A(z

−,0⊥)

−

∫
dz−γ̃A(z

−,x⊥−y⊥;∆)

)
. (B.4)

It is very convenient to introduce the temporary no-
tation

∫
dz−γ̃A(z

−, r⊥;∆) = f(r⊥;∆). In this notation
(B.4) reduces to

−g2Nce
i∆⊥

x⊥+y⊥
2

(
cos

(
∆⊥r⊥
2

)
f(0⊥;∆)−f(r⊥;∆)

)
,

(B.5)

where we used the notation r= x⊥−y⊥.
Evaluation of the higher-order contributions is a bit

more tricky. First we have to notice that the Gaussian form
ofW [ρ] enables us to introduce a sort of Wick theorem for
the evaluation of the multileg correlators. After that, we
have to make a Fourier transformation of each correlator,
take the integral over d2X⊥ and make the Fourier trans-
formation back to coordinate space. Performing such a
procedure step-by-step, the contribution of the 2nth order

8 To check this, just introduce the external current J ·ρ and
evaluate 〈P ′|ρ1 . . . ρn|P 〉 taking derivatives. Notice that this
would be not true if we had “interaction terms” ∼ ρ3, ρ4.

term after some manipulations may be reduced to

2n∑
m=0

min(m,2n−m)∑
k=0

(−1)n−mg2nNnc
k!(m−k)!(2n−m−k)!

×

∫
d2∆⊥1
(2π)2

· · ·

∫
d2∆⊥n
(2π)2

δ
(
∆⊥−

n∑
i=0

∆⊥i

)

×

⎛
⎜⎝
[
m−k
2

]
∏
i=1

f(0,∆⊥i )e
ix∆⊥i

⎞
⎟⎠

×

⎛
⎜⎝

n∏
i=
[
m+k
2

]
+1

f(0,∆⊥i )e
iy∆⊥i

⎞
⎟⎠

×

⎛
⎜⎝

[
m+k
2

]
∏

i=
[
m−k
2

]
+1

f(r⊥,∆
⊥
i )

⎞
⎟⎠

= ei∆
x⊥+y⊥
2

2n∑
m=0

min(m,2n−m)∑
k=0

(−1)n−mg2nNnc
k!(m−k)!(2n−m−k)!

×

∫
d2∆⊥1
(2π)2

· · ·

∫
d2∆⊥n
(2π)2

δ
(
∆⊥−

n∑
i=0

∆⊥i

)

×

⎛
⎜⎝
[
m−k
2

]
∏
i=1

f(0,∆⊥i )e
ir∆⊥i /2

⎞
⎟⎠

×

⎛
⎜⎝

n∏
i=
[
m+k
2

]
+1

f(0,∆⊥i )e
−ir∆⊥i /2

⎞
⎟⎠

×

⎛
⎜⎝

[
m+k
2

]
∏

i=
[
m−k
2

]
+1

f(r⊥,∆
⊥
i )

⎞
⎟⎠ . (B.6)

Now we place back

δ
(
∆⊥−

n∑
i=0

∆⊥i

)
=

∫
d2Xei∆⊥X⊥

n∏
i=1

e−i∆
⊥
i X⊥

and reduce (B.6) to

ei∆
x⊥+y⊥
2

∫
d2Xei∆⊥X⊥

×
2n∑
m=0

min(m,2n−m)∑
k=0

(−1)n−mg2nNnc
k!(m−k)!(2n−m−k)!

×

⎛
⎜⎝
[
m−k
2

]
∏
i=1

∫
d2∆⊥i
(2π)2

f(0,∆⊥i )e
ir∆⊥i /2

⎞
⎟⎠
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×

⎛
⎜⎝

n∏
i=
[
m+k
2

]
+1

∫
d2∆⊥i
(2π)2

f(0,∆⊥i )e
−ir∆⊥i /2

⎞
⎟⎠

×

⎛
⎜⎝

[
m+k
2

]
∏

i=
[
m−k
2

]
+1

∫
d2∆⊥i
(2π)2

f(r⊥,∆
⊥
i )

⎞
⎟⎠ (B.7)

= ei∆
x⊥+y⊥
2

∫
d2Xei∆⊥X

×
2n∑
m=0

min(m,2n−m)∑
k=0

(−1)n−mg2nNnc
k!(m−k)!(2n−m−k)!

× f̃
[
m−k
2

](
0,
r

2
−X

)
f̃

[
m+k
2

](
0,−
r

2
−X

)
f̃k(0,−X)

(B.8)

= ei∆
x⊥+y⊥
2

∫
d2Xei∆⊥X exp

[
−g2Nc

×

(
f̃
(
0, r2 −X

)
+ f̃
(
0,− r2 −X

)
2

− f̃(r,−X)

)]
, (B.9)

in agreement with (B.2).
For the evaluation of the complicated objects like

〈P ′|Φ[ρ]U†(x⊥)U(y⊥)|P 〉

(see e.g. the gluon distributions) we can use a quasiclassical
formula:

〈P ′|Â(x, y)B̂(x, y)|P 〉

=
ei∆

x+y
2

P̄+

∫
d3Xei∆X

×

(∫
d3∆1
(2π)3

e−i∆1X
〈
P +∆1

∣∣∣∣Â
(
r

2
,−
r

2

)∣∣∣∣P
〉)

×

(∫
d3∆2
(2π)3

e−i∆2X
〈
P +∆2

∣∣∣∣B̂
(
r

2
,−
r

2

)∣∣∣∣P
〉)

=
ei∆

x+y
2

P̄+

∫
d3∆1
(2π)3

d3∆2
(2π)3

(2π)3δ3(∆−∆1−∆2)

×

〈
P +∆1

∣∣∣∣Â
(
r

2
,−
r

2

)∣∣∣∣P
〉〈
P +∆2

∣∣∣∣B̂
(
r

2
,−
r

2

)∣∣∣∣P
〉

= ei∆
x+y
2

∫
d3Xei∆XAcl

(
r

2
−X,−

r

2
−X

)

×Bcl
(
r

2
−X,−

r

2
−X

)
, (B.10)

where r= x−y.
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